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SUMMARY 
The initial value problem presented by mixing and chemical 

reaction in the wake of a flat plate is solved using the boundary- 
layer approximation. When a cool combustible mixture and its 
hot combustion products are separated by a finite, perfectly 
insulating flat plate, the velocity, temperature, and combustible 
concentration are determined in the vicinity of the trailing edge. 

The mixing problem without chemical reaction is solved in 
terms of a ‘universal solution ’ for a given initial temperature 
ratio and Prandtl number from which the solution for arbitrary 
temperature ratios can be obtained. 

The mixing problem with chemical reaction is solved in terms 
of a ‘universal solution’ for the first two terms of an assumed 
series solution for the temperature. In this case the ‘ universality ’ 
is with respect to a parameter B characterizing the chemical and 
hydrodynamic initial conditions. 

The axial distance from the trailing edge to the first local 
temperature maximum is given in terms of the initial conditions 
and is shown to be greatly shortened by the presence of the viscous 
wake as compared with non-viscous mixing. 

1. INTRODUCTION 
When flames are stabilized on bluff bodies, the interaction of a cool 

combustible mixture with its hot combustion products is of great importance 
for the stabilization mechanism (Zukoski & Marble 1955 ; Cheng & Kovitz 
1958). An idealization of the problem was first carried out by Marble & 
Adamson (1954). They consider a non-viscous, perfectly insulating, 
semi-infinite partition separating a cool combustible mixture from its hot 
combustion products. At the trailing edge of the partition velocity, 
temperature and concentration of combustible are uniform in each half- 
plane. Temperature distribution and combustible concentration are, 
initially (i.e. at the trailing edge), step functions while the velocity 
distribution may or may not be a step function. Their analysis then gives 
the temperature, combustible and velocity distributions in the neighbourhood 
of the trailing edge of the semi-infinite partition. Of particular interest 
is the distance downstream from the trailing edge at which a local 
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temperature maximum, due to heat release by chemical reaction, first 
appears. 

The present analysis is concerned with the identical problem except 
for one important difference. The partition between the two streams is 
now taken to be of finite length and viscosity is included. As a result, 
the initial velocity distribution is no longer uniform but of the Blasius type. 
It will be seen that this significantly alters the distribution of stream properties 
in the immediate neighbourhood of the trailing edge as compared with 
Marble & Adamson’s result. 

2. ASSUMPTIONS CONCERNING THE MODEL AND ANALYTICAL FORMULATION 

OF THE PROBLEM 

In this paper a detailed discussion of the assumptions on which the 
model is based will be omitted. They have been fully discussed by Adamson 
(1954). In essence, the equations to be presented for solution describe 
the following flow, which is schematically shown in figure 1. In  the upper 
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Figure 1. Schema of model with coordinate system. 

half-plane there is, initially, a cool combustible with temperature TI,  
density pI, and free stream velocity uI. The lower half-plane consists, 
initially, of fluid which is chemically inert with respect to the upper stream 
(say its combustion products). Its temperature is TI1 > TI,  its free stream 
velocity is uII = uI, and its density is PII = pI T I / T I I  since the pressure is 
assumed constant throughout the field. The specific heat C, and molecular 
weight M of each component (combustible and combustion product) are 
equal, with C, taken as constant. The transport properties, dynamic 
viscosity p, coefficient of thermal conductivity A, and binary diffusion 
coefficient D of each component are equal and vary as though the molecules 
were Maxwellian with the Eucken correction for X holding. From the 
above it follows that the Prandtl number Pr = C, A/p and Schmidt number 

F.M. I3 
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S c  = p/pD are constant throughout the field. Also, p p  = constant. Heat 
release by chemical reaction is assumed t o  be first order, that is, the heat 
release Q per unit volume per unit time is assumed to be given by the 
equation 
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where AH = heat release per unit mass of combustible, p = local density, 
mass per unit volume, K = relative mass concentration of combustible, 
mass of combustible per unit mass of mixture, r = characteristic chemical 
time constant, R = universal gas constant, A = activation energy, a constant. 
Finally, the flow is assumed steady with a laminar mixing region in which the 
usual boundary layer approximations hold (Goldstein 1938). 

The governing equations are obtained from conservation of mass, 
conservation of momentum, conservation of energy, and conservation of 
combustible. Since pp = constant the Howarth transformation (Howarth 
1948) may be used to uncouple the continuity and momentum equations 
from the energy and combustible equations. The equations to be solved 
can then be written as 

U,+U, = 0, 1 
uux+vu, = uyy, J t 

1 
u0, + v0, = - + BKec0a/@, 

Pr 
1 uKx + vK,  = - K,, - CKe-eaie sc 

where B = 41AH/uI yC, T I I ,  C = 41/u, r. 8 = TIT,,, 8, = A/RT,,, and 
1 is the length of the flat plate. The symbols u and v denote non-dimensional 
axial and transverse velocity components in the incompressible plane 
while x, y are the corresponding distance coordinates, with origin at the 
trailing edge of the flat plate. Their definitions are taken from Goldstein 
(1930). 

Equations (1) have been solved by Goldstein (1930) for the case of flow 
in the wake of a flat plate with symmetric Blasius velocity profiles at the 
trailing edge. This solution will be used in solving (2). 

Goldstein’s solution for u, v is expressed in terms of the independent 
variables 

5 = x113, 

These variables will also be used in the solution for B and K. Furthermore, 
since the Blasius initial condition is in terms of the Blasius series uo(y), 
valid only for y > 0, Goldstein’s solution for u, v is valid only for r) > 0. 
It is therefore necessary to construct solutions for 8 and K in the two 
half-planes separately and join them smoothly at y = 0. (Quantities in 
the upper half-plane will be denoted by an overbar.) 

Another consequence of the Blasius series initial condition is that 
Goldstein’s solution is expressed in two forms, one valid for small y, 

r )  = y/3f. 
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the other valid for large y. 
constructed in the same way. 

Therefore, solutions for 0 and K must also be 

The boundary conditions for 0 and X are 
lim, 8(5, 7j) = lim, 8(f, +j) = TJT,, = A, 
lim30(<,q) = lim40(E,7) = 1, 

Iim, K(5,7j) = lim, K(e, ;i) = I, 
lim, K(5,r) = lim, K(E, 7) = 0, 

where 

3. SOLUTION FOR 0 AND K FOR SMALL y 

For small y, solutions of the form 

o( t , q )  = 5 O n ( q ) E W ,  1 I 
n=O 

I K(E,q) = 5 Kn(q)tn, 
Yl=O 

are assumed, with similar forms in the upper half-plane. 
Since the initial condition as [ -+ 0 with y = constant is independent 

of y it can be shown that the first term of each series must be independent 
of 5 and all terms with n 2 1 must vanish as 5 3 0 ,  y = constant. In terms 
of the assumed solutions (3)  this implies 

lim go = A, 

Iim KO = I, 

lirn Go = 1, 1 
lim K, = 0, 

1 (4) 
<-fa, 1)+m 

J fi+W n-tm 
and 

lim 8Jij” = lim On/qn = lirn KW/7jn = lim Kn/qn = 0 ( 5 )  
7 j - t  m 7)+m i j + W  1)+ 00 

for n 1. 
For large y the form of solution must be such that at some intermediate 

value of y the two solutions join smoothly. Its form will be discussed after 
the solution for small y has been obtained. 

Goldstein (1930) gives, for small y, 

E 2  
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The functions fo, f 3 ,  fs and their derivatives were calculated by Goldstein 
and have been recalculated for smaller mesh size in the present work. 
Substituting ( 3 )  and (6) into (Z), and equating the coefficients of like powers 
of ( to zero in the usual manner, we obtain a series of equations for Qn(q) 
and Kn(7) : 

Q: + Azfo 6': -A,  f ,  Q, = P Y I ~ ,  1 
(7) K; + Y 2 f o  K,' - Y s f ,  K, = ScH.5, 1 

where 
A, = S P Y ,  ys = ssc, (s = 0, 1, Z...) 
I ,  = Il = Ho = Ifl = 0, 
I2 = - 9BK0 e--OaJ8Q, 

H 2 -  - 9CK0 e-e[~joo, 

and for s 3 
I, = -9B DiK,+ 2 ( ( t - 3 ) ~ ~ , Q ~ - 3 - ( 3 1 + Z ) f 3 1 Q l - 3 )  

n,J=O t=H 
n + j = s - 2  l = l  

t +  3(1-1)=8 

with H, identically the same except for replacement of B by -C, Q1-3 

by K1-3 and Ql-, by Kl-3. The coefficients D j  are obtained from the 
expansion 

Similar results hold for the upper half-plane. 

be written as 
By the method of variation of parameters a formal solution of (7) may 

Q s ( 4  = a, . fm?) + bs fw?) - pr I,(+XP(A, s p f o ( z )  ..} x 

x {ft+?)fP)(Y -fl"'(df$'(*)16 (8) 
where a,, b, are arbitrary constants and fp), fg) are linearly independent 
solutions of the reduced (homogeneous) equation. A similar result holds 

for KS(71). 
For small and large q, f, behaves as 

r5 jo = poq+p;& - 2 ~ 3 -  +..., 
O 5 !  

3 1 

t (9 1 
f o  - ~a , (q  + w + O[(T + exp{ - M~I  + s ~ ) ~ I I ,  1 

respectively, where Po = 3.67869, a1 = 5.97708, 6, = 0.3408 (Goldstein 
1930). 

For small 7 a solution of the reduced form of (7) is given by 

QL") = a,( 1 + y ~ ) q 2 + y ~ ) ~ 4 +  . . . )+bs ( r l+y~)r13+y~)?75+  ...) 

= a, f:"' + b, fg', (10) 
where the #) are known functions of Po, A2, and A,. The meaning of as 
and b, in (8) is now clear. a, is the value of Q, at q = 0, while b, is the value 
of 19: at q = 0. 
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4. SOLUTION OF THE REDUCED EQUATION FOR LARGE 7 

The boundary conditions (4) and (5) are all applied as 7 -+ 00. Therefore, 
a, and b, cannot be evaluated from the general solution (8) until the 
asymptotic form of this solution is known. Since fp) and fp) cannot be 
expressed analytically for all 7 the asymptotic form of (8) cannot be 
obtained directly. 

Using the asymptotic form of fo and neglecting the exponentially 
small term, we find that the equation (7) for OF) becomes 

where a = tll Pr and u = 7 + 8,. The solution of (11) gives 0:”) as a function 
of u. It can be shown that only exponentially small terms will be added 
to Op) as 7-f co if the exponentially small term info is retained. 
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8 8 (11) (jio)‘ + au2@O)’ - sao(j(0) = 0 

The substitutions 

transform (11) into 

which is a form of Whittaker’s equation (Whittaker & Watson 1952). 
I n  terms of 6i0) and o the asymptotic form of its solution may be written 
as 

(jy A, u - ~ - 2 e - - t a ~ 3  P + 

{A- (is+ $+ +)2]{&- (is+ Q + *)”...{&- (+s+ Q +n- 
+ c  n = l  n ! ( +au3)n 

+Bsus{l + 
{=- 1 ( -  3s- Q + 3)”)($- (- 4s- * + #)2) ...{A- ($s+ Q-n+ +)2} 

n=l n ! ( -  3 , ~ ~ ) ~  
(13) 

where A, and Bs are arbitrary constants. 
upper half-plane and for Kjo). 

A similar result holds for the 

5. DETERMINATION OF ARBITRARY CONSTANTS FROM BOUNDARY CONDITIONS 

Although a particular solution to the asymptotic form of (7) has not, as 
yet, been obtained it can be seen from (13) that A, will not be fixed by the 
boundary condition for the lower half-plane alone. However, B, must 
be determined since the second term of (13) becomes of order us as u+ co. 
It will be seen that as u+ co the particular solution of (7) becomes 
exponentially small in the lower half-plane and can be neglected in the 
upper half-plane due to the assumption of zero heat release by chemical 
reaction in the cool combustible. This, therefore, implies that for s 2 1 

- 
B, = B, = 0. 
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Six constants remain to be determined. They are a,, b,, A,, Z,, Zs, 
and A,. Their determination stems from the matching of value and slope 
of 8, and 0, at two values of y, namely 7 = +j = 0 and y = f j  = ym, ym being 
some intermediate value of 7 and +j where both solutions of 8, and 0, are 
assumed valid. 

The matching of value and slope at 7 = +j = 0 immediately gives 

The matching of value and slope at y = +j = ynL gives 

a, D,, + b, Dz, + D3, = A, D,, + D5s, 1 
(15) 

a, D;, + 6, DH, + Oh8 = A, Dl, + DLs, 1 

a, D;, - b, D;, + DIj, = & Djs + D$,, 1 
where the Di and Di are functions of 7 evaluated at 7 = +j = vm. Thus six 
equations are available for the determination of the six arbitrary constants. 

as D,, - b, D2,s + 4, = A, D,, + D5s, 1 

6. THE FIRST FIVE TERMS OF THE SOLUTION FOR SMALL y 
(i) For large y, from equation (13), 

8, N A0u-2exp( - 4a03) (16) 

where aka' is a constant given by (13)  and B, = 1 because of the boundary 
condition (4) and, for large +j, 

- m o,, N A, u-2 exp( - +au3) (17) 

since E, = A. 

it can be shown that 
Carrying out the matching technique described in the previous section, 

a, = $ ( l + A ) ,  b, = t(l-A)/{ozo-DSoD,,/Dj,), A, = -&, (18) 
where the D symbols are as defined by (15). 

Since the D's do not depend upon A it can further be shown that 

(19) 1 + A  1 - A  
2 1-A" 

+ -[ 8,,(7, Pr, A*) - - 
2 O,(% pr, A) = - 

where A* is a particular value of A. 
the same way with K,, = 4 when y = 0. 

PY = 0.91 and 1.00 with A* = 0.286. 
in $9. Figure 2 shows 8, and KO for Sc = 1-00. 

The solution for K,, is obtained in 

The function Oo(y, Pr, A*) has been integrated numerically for 
Numerical integration is discussed 

Note that 

(ii) In  solving for 8, through the matching technique it can be shown 
that a non-trivial solution for a, and b, will be obtained only if the Wronskian 

K, = (1 -e,,)/(i -A*). (20) 
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J41)fhl)' -f$l)'fhl) vanishes. Since fj" and fJ1) are linearly independent solutions 
for 9, this implies that the only solution for 9, satisfying the boundary 
conditions is that for which a, = 6 ,  = 0 or el= 0. The same result holds 
for K,, namely, K,= 0. 

(iii) The equation for 9, is ' ~ 

9; + 2f0 PY 9; - 2f, Pr 0, = - 9BPrK,, e-eafOn. (21 1 

0.80 

7 - 1:: 

1 0.60 

0.20 

0.00 

0.20 

0.40 

f 

0.80 

o a a  0.40 0.w 080 1.00 

Figure 2. Solution for O,, and KO. 

8, is the first factor in the solution for 9 which contains the effect of chemical 
reaction. This is seen from the form of I,. With chemical reaction absent, 
B = 0. Then 9,- 0, by the same argument as was used to show that 
9,- 0. By direct substitution it can be shown that if 9,(7, ..., B") is a 
satisfactory solution of (21) for B = B', then, for any B, 

(22) 
B 
B" u7, ~ 7 ,  sc ,  e,,A, B )  = - B , ( ~ ,  pr,  sc ,  e,, A, B"). 

Thus the dependence on the parameter B has been extracted. Furthermore, 
using the matching technique of $ 5 ,  with exp( -9,/A) < 1, it can be 
shown that 

for values of 7 where do .i: 1. 
e,x e-0, (23 ) 

It is interesting to note that if S c  = Pr, 

C 
~ ~ ( 7 ,  PY, e,, A, c) = - B' e2(7, PY, sc, e,, A, B"). 
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K2 is, physically, the first term in the concentration solution that gives 
the effect of loss of combustible due to chemical reaction. 

0, = 23.96, PY = 1.00, and A = 0.286. 
of the numerical method is deferred to $9. 

0, has been obtained by numerical integration for B = 2-58 x 
It  is shown in figure 3 .  Outline 

Figure 3. ' Temperature distribution ' O2 due to heat release I,. 

From the dependence of I ,  on KO, it can be seen that I, becomes 
exponentially small as r]+ co. Therefore, a particular solution of (21) 
for large r ]  would also be of exponential order. In  the upper half-plane 
&+A, so that 7, is of the order of Bexp( -O,/A) < 1, since chemical 
reaction is assumed to be negligible in the cool combustible. Therefore, 
a particular solution of (21) for large i j  would be of order B exp( - 6,/A). 
These - observations show that for the boundary conditions to hold, 
B ,  = B ,  = 0. Thus, for large 7 and a = b, 

(25 ) 
(iv) Since = Kl= 0, it can be seen from the definition of I3 that 0, 

is really a term due to mixing without chemical reaction. Furthermore, 
I3 and i3 are antisymmetric about r] = i j  = 0, because O(, and 0; are anti- 
symmetric about r] = i j  = 0. This implies the antisymmetry of O3 and o3 
about r] = i j  = 0. This conclusion may also be seen from the matching 
technique of 55. 
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Finally, because of (19) and the dependence of 1, on R;, 

1-A 
1 -A* R,(,,Pr,A) = - R,(,, Pr, A"). 

8, is exhibited in figure 4 for Pr = 1-00 and A* = 0.286. 

' 3  

Figute 4. Solution for 0,. 

Figure 5 .  Solution for 8,, showing I*. 

(v) R4 is the last term computed with chemical reaction. A particular 
solution of the asymptotic form of the governing equation is exponentially 
small since 1, becomes exponentially small when ,+ co. Therefore, as 
before, B 4 z  0. The same argument as used t o  show that B2 = 0 will 
show that B, = 0. R4 is exhibited in figure 5. 
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(vi) The solution of O ( f ,  7) for large 7 and small y will now be collected 
since it will be useful in the discussion of the next section. If the asymptotic 
forms of O,(q) given by (13), together with the asymptotic form of a 
particular solution to 0,, be substituted into (3), the asymptotic form of 
d ( f , ~ )  is obtained. Using Qo and d 2  only, with Pr = Sc, i.e. u = b, and 
0 = 'I +a,, 
O(f ,q)  - 1 + [Ao{'1-~-22607)-~+36~7)-~- ...}+ 

+S2A2{q-4-460q-5+ ...}+...I exp{ - ~u(r13+36,'12+362,17+6~)} (27) 
A similar result holds in the upper after making use of B, = 8, = 0. 

half-plane and for K ( f ,  7). 

7. SOLUTION FOR LARGE y AND ITS MATCHING WITH SOLUTION FOR 

SMALL y 
It was pointed out in 9 2 that Goldstein's (1930) solution for u, v is split 

into two forms, one valid for small y, the other Galid for large y. Accordingly, 
the solution for 0 and K must also be so split and made to match at some 
intermediate y which is really the outer limit of validity for the small-y 
solution. 

The form of solution for small y at its outer limit of validity is obtained 
by making 'I large. The new 
solution valid for large y will be forced to match this form when y is 
reasonably small. 

For large y it will be assumed that the terms measuring the rate of heat 
release due to chemical reaction and the rate of consumption of combustible 
are small compared with convection, conduction, and diffusion terms. 
This assumption implies that the region in which Goldstein's wake solution 
for large y applies is one where pure mixing, without chemical reaction, is 
predominant. 

This form, for O ( f , q ) ,  is given by (27). 

The governing equations (2) are then simplified to 

u0, + v0, = Pr-lOYY, uK, + vK, = SC-~K, , ,  (28) 
with identical equations in the upper half-plane. 

Goldstein's velocity solution, for large y, to be inserted here, is 

and A = 36,, with u0(y) representing the Blasius velocity profile at x = f = 0. 
In so 

doing, y is made arbitrarily small, since = y/35. Considering only terms 
independent of f ,  equation (27) becomes, as [+O, 

O ( f , q )  - 1 +Ao(~-2 -260~-3+ . . . ) exp( -  Qa(~3+336,172+36~~+63). (30) 

For given sufficiently large 'I, f can be made arbitrarily small. 
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The solution of (28) using the u, u given by (29) must reduce to (30) 
This suggests assuming a solution of for ( - to  and sufficiently small y .  

the form 
m 

e(t,ri) = 1 + N  t: ~ , ( Y ) S T + 2 e x p ( ~ , ( Y ) 5 - 3 + ~ , ( Y ) ~ - 2 + ~ , ( y ) 5 - 1 }  (31) 
r=O 

in the lower half-plane where O,, 0 6 ,  0, and @,(y), with Y = 0, 1, 2, ... 
are, as yet, undetermined functions of y ,  and N is an, as yet, arbitrary 
constant. Substituting this assumed solution and (29) into (28), and 
equating the coefficients of like powers of eexp{0,(-3+...) to zero, one 
gets a series of equations for 0,. 

The first four equations are 

- 0 ; 2 + * ; 0 ,  1 = 0, 1 I 
I Pr 

Although the equations after the first one remain first order and linear, 
they rapidly become lengthy. 

Solving for 0, one gets 

(33) 

where G, is an arbitrary constant. From the definition oft&, 

where a, = +a, a4 = - +a2/4 !, ... 
and a = 1.32824. 
Then 

since a = a, Pr from (1 1). 

4; = u,,(y) = a,y+a,y4+ ..., 

Goldstein defines C C ~ , + ~  = 337+2u3r+1, for r = 0, 1, 2, ... . 
a, = x1/9 = a/9Pr, 
Therefore, for sufficiently small y, 

This is exactly the form required for the matching. The required solution 
of 0, is then 

The solution for @ b  can be shown to be 
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where G, is an arbitrary constant. 
for small y is as required, namely, 

The required solution for 0, is then 
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Setting G2 = 0, the behaviour of Ob 

@ b  - - ~ S , ( y / 3 ) ~ .  

0 b -  - - gPrS, +:1/2 J +~1/2 dy, 

since A = 36,. 
The required solution for 0, is 

(35) 

For sufficiently small y it becomes 

0, N - as0(y/3)  
as required for perfect matching with (30). 

be checked to be 

as required for the matching. 

The solution for 0, for all y is lengthy but its behaviour at small y can 

0, - y-2 

Finally, the constant N must be 
N = 9A, exp( - +as:). 

Terms of higher order than 0, were not calculated. 
Thus a solution of 0 for large y has been obtained and matches the 

solution for small y in the following sense. For a given sufficiently large 7, 
.$ is made so small that only terms independent of .$ are important in the 
asymptotic solution stemming from the region of small y but large 7. The 
solution for large y matches this form as y gets sufficiently small. 

The series (31) does not permit matching with the series solution for 
small y to  terms involving e2 and higher as appeared in (27)  for large 7. 
Attempts at modifying the formal expansion ( 3 1 )  to obtain a formal matching 
to higher order powers of 5 have so far been unsuccessful. This is in sharp 
contradiction with Goldstein’s velocity solution where perfect matching 
is indicated. 

It is rather fortunate, as shown by the computed results, that the physical 
problem of present interest is in the region of very small .$ and a value of 7 
such that the solution for small y applies. Therefore, the matching 
procedure, unsatisfactory as just described, recedes in importance except 
for mathematical interest. 

8. LOCATION OF FIRST LOCAL TEMPERATURE MAXIMUM 

For a pure mixing interaction between hot and cold flow the temperature 
distribution in the wake follows a uniformization process. No local maxima 
can appear since there are no heat sources in the flow field. With heat 
release by chemical reaction this is no longer true. The distributed chemical 
reaction raises the temperature throughout the field and with the assumed 
rate law given in $ 2  a local maximum in reaction rate occurs in the hot 
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stream thus causing a local temperature maximum to appear there also. 
This local maximum then rapidly propagates upward into the cool 
combustible. 

With the temperature distribution given by O(f,v), the locus of 
temperature maxima, ((q), is given by Oq = 0. 

Prior to formation of the initial local maximum, < 0 for E < &, 
where ti is the location of the initial maximum. After the maximum forms 
there must be a value of 7 at which an inflection occurs, i.e. O,, = 0. Above 
this point O,, < 0, and below this point Oqrl > 0. As t-&+ + O  the 
inflection point coalesces with the point where O7 = 0. Therefore, the 
initial maxinium is given by the conditions 

e = e  0 179 = o  (37) 
at E = ti, 71 = vi. 

first two terms of e ( ( , T )  for calculation of &. From (37) 

and 

The numerical results indicate that it is sufficiently accurate to use the 

e;,/e;, = e p ;  at rl = qi, 

ti = ( - e;,/e;)t/" 17i. (38) 
From (19), (22) and (23) 

1-A B 
%(,,A) = - -A" q% A"), e;(% e,, B )  = B" exp(q - e,)eg(% e,., B"), 

where it has been assumed that the initial maximum occurs where O,, = 1.  
Putting these results into (38) one gets ti in terms of a known (r. With 

the restrictions that Pr = Pr", Sc = S P ,  this gives 
ti = [- 1 - A  B" -exp(fi,-fi:] l i  2 5:. 

1-A" B (39) 

This simple formula (39) gives explicitly the dependence of the critical 
distance ti on all the important dimensionless quantities, namely, the 
temperature ratio of the two streams A, the activation energy 8, = A/RT,,, 
and most interesting of all, the parameter B = 41AHl2/u, rep TI, which 
combines the fluid mechanical properties 1, uI with the chemical kinetic 
properties AH12/cp TI,  and 7 .  

The effect of each individual physical quantity can be obtained easily 
from this formula. A detailed discussion and the implication concerning 
the appearance of a flame has been given in a previous paper (Cheng & 
Kovitz 1956). 

The following important conclusions may be mentioned. 

(i) The presence of a viscous wake shortens, by an order of magnitude, 
the distance ti where the temperature maximum occurs, as compared 
with the result without the initial wake (Marble & Adamson 1954). 

(ii) The apparent fluid-mechanical variable in determining the distance 
ti is the shear at the trailing edge of the plate. 
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(iii) The variation of & due to thermo-chemical-kinetic properties is 
overwhelming compared with the variation produced by the 
fluid-mechanical properties within practical ranges. 

9. NIJMERICAL METHOD 

Since Goldstein's velocity solution involves a numerical tabulation 
of the functionsfo,f3,f6 it is, of course, necessary to determine Bo, el, 02, ... 
numerically also. The system of equations for the 0, being linear, it has 
been possible to extract the parameters A from do and O,, and B from 8,. 
That is to say, a tabulation of 60 and 8, for a given A yields 8, and 8, for 
all A from (19) and (26), while a tabulation of 8, for given B yields O2 for 
all B from (22). In  $ 10, it will be seen that when chemical reaction is 
absent A may be extracted from all the non-vanishing coefficients 
e,,., T = 0, 1, 2, ... . The method of trial and error is preferred to the 
superposition of solutions to meet the boundary conditions at two different 
points in the numerical integration for higher accuracy. 

The numerical integration of 8, and KO is straightforward since the 
initial values at 7 = The initial value of 8, 
is also fixed from the result of $6. These functions were obtained from a 
single trial and error procedure. 

First approximations to 8, and 0; at 7 = 7 = 0 can be obtained from 
the matching technique of $5, but their precise determination was made 
from a double trial and error procedure. The single pair of values of 
O,(O) and Si(0) which give correct behaviour of 8, and O2 were rather quickly 
localized using a graphical interpolation method. Details are given by 
Kovitz (1956). 

= 0 are specified as in $5. 

10. SOLUTION WHEN CHEMICAL REACTION IS ABSENT 

The absence of chemical reaction implies B = C = 0. Within the 
approximations used, this uncouples the dependence of 8 on K as seen 
from (28). From the general results in $ 3  the inhomogeneous term then 
becomes, for s 2 3, 

Is = 2 ( ( t  - 3 ) f ; l 4 - 3  - (31 + 21f31e;- 3)' (40)' 
t = 3  
E=l 

t + 3 ( 1 - 1 ) = ~  

It has been shown that 01= 0. By the same 
reasoning as was used to show that el= 0, it can be seen that t14= 0. 

With B = 0, I, = 0, as seen from the definition of I, in $ 3 .  Therefore, 
as previously shown for el, d,= 0, which implies 15= 0, which in turn 
implies Og- 0. 

Therefore, 14= 0. 

From equation (40), 
r6 = - 5f3 e; + 3f; e, - sf6 e;. 

From Goldstein (1930) f3 = f 6  = 0 at 7 = 0. Furthermore, it has been 
shown that 8,(7 = 0) = 0 and that Oh, 03, 19; are geometrically antisymmetric 
about 7 = +j = 0. Therefore, I6 is antisymmetric about 7 = 7 = 0. 
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= 0 such that and error numerical integration yields 0; at 
condition 

lim B6/q6 = 0 
v+ w 

A single trial 
the boundary 

is met. 0, is shown in figure 6 for A = 0.286, Pr = 1.00. 

Figure 6. Solution for 8,. 

From the form of 1 6  and equations (19) and (26) it is clear that 

(41) 
1-A 

e6(77, A) = 1-n. e6(,, pr, 

From (40) it is seen by induction that I, depends only on (s-3))BS-, 
and Oi-3 for s 2 3. Therefore, only 13? (Y = 1, 2, 3, ...) is non-vanishing, 
which implies that only B,, (Y = 1, 2, 3, ...) is non-vanishing. The general 
solution for all A in terms of a solution for A* and given Pr is then 

1 -A 
0([, 71, PY, A) = +(I  + A )  + -* {- $(I +A*) + e&, Pr, A*) + 

+ E383(7, PY, A*) + [‘0,(,, PY, A*) + ...}. (42) 

11. CONCLUDING REMARKS 

The region of convergence of the series solutions cannot be specified 
analytically. However, the numerical results do show that with chemical 
reaction the magnitude of the coefficients On(,) increases rapidly. Since 
this is essentially a linearized solution only, the region where the effects 
of chemical reaction are small compared with pure mixing effects can be 
considered. This is delineated by 0 < 5 < Ei where Ei is again the value 
of 5 at the appearance of the first local temperature maximum. A detailed 
computation (Kovitz 1956) using the first four terms of 0, with azomethane 
as combustible, shows good convergence for E = ti = 0.048. Considering 
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only the dependence of & on B, given by (40), it can be seen that if the 
series converges for f:, it will converge for &, since 8, is approximately 
independent of B. 

If chemical reaction is absent the coefficients 8, grow less rapidly. 
The magnitude of I,, and so the magnitude of Or, depends upon the magnitude 
of Goldstein’sf,,. It may thus be estimated that the convergence without 
chemical reaction is of the same character as the convergence of Goldstein’s 
solution for u, 71. 
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